Chemical modification of the bifunctional regulatory protein of maize leaf pyruvate,orthophosphate dikinase. Evidence for two distinct active sites.

نویسندگان

  • C A Roeske
  • R Chollet
چکیده

The active site(s) of the bifunctional regulatory protein of pyruvate,orthophosphate dikinase catalyze(s) the Pi-dependent activation (dephosphorylation) and ADP-dependent inactivation (phosphorylation) of maize leaf dikinase. The chemical modification studies of the regulatory protein active sites presented in this paper are interpreted as showing the two sites to be physically distinct. Pyridoxal 5'-phosphate and 2-nitro-5-thiocyanatobenzoate (NTCB) selectively inhibit the dikinase activating site, which is protected by the nonprotein substrate, Pi. Phenylglyoxal blocks both the activation and inactivation sites; the former is protected selectively by Pi and the latter by both the nonprotein substrate, ADP, and Pi. The Pi that protects the inactivation site is distinct from the activation substrate. Inhibition studies show Pi to be a parabolic competitive inhibitor of the ADP-dependent inactivation of dikinase, implying that besides substrate Pi, a second phosphate also binds to the regulatory protein. The above chemical modifications are not mutually exclusive; neither NTCB, 5,5'-dithiobis-(2-nitrobenzoate), nor pyridoxal 5'-phosphate blocks subsequent modification of the activation site by phenylglyoxal. Similarly, prior modification with NTCB does not affect modification by pyridoxal 5'-phosphate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes.

I describe here the organization of maize C4 chloroplast and non-C4 cytosolic pyruvate, orthophosphate dikinase (PPDK) genes and the molecular mechanisms underlying their differential expression. The maize C4 chloroplast PPDK gene (C4ppdkZm1) appears to have been created by the addition of an exon encoding the chloroplast transit peptide at a site upstream of a cytosolic PPDK gene (cyppdkZm1). ...

متن کامل

Posttranslational Modification of Maize Chloroplast Pyruvate Orthophosphate Dikinase Reveals the Precise Regulatory Mechanism of Its Enzymatic Activity.

In C4 plants, pyruvate orthophosphate dikinase (PPDK) activity is tightly dark/light regulated by reversible phosphorylation of an active-site threonine (Thr) residue; this process is catalyzed by PPDK regulatory protein (PDRP). Phosphorylation and dephosphorylation of PPDK lead to its inactivation and activation, respectively. Here, we show that light intensity rather than the light/dark trans...

متن کامل

Stabilization of pyruvate, pi dikinase regulatory protein in maize leaf extracts.

The objective of this study was to determine the biochemical basis for genetic variability in pyruvate,Pi dikinase (PPDK) activity among inbred lines of maize (Zea mays L.). Although in vitro PPDK activity varied more than 5-fold among eight maize inbreds, immunochemical determinations of the proportion of leaf soluble protein as PPDK revealed no significant differences among the inbreds. Genet...

متن کامل

The pyruvate, orthophosphate dikinase regulatory proteins of Arabidopsis possess a novel, unprecedented Ser/Thr protein kinase primary structure.

Pyruvate, orthophosphate dikinase (PPDK) is a ubiquitous, low-abundance metabolic enzyme of undetermined function in C3 plants. Its activity in C3 chloroplasts is light-regulated via reversible phosphorylation of an active-site Thr residue by the PPDK regulatory protein (RP), a most unusual bifunctional protein kinase (PK)/protein phosphatase (PP). In this paper we document the molecular clonin...

متن کامل

Significant accumulation of C(4)-specific pyruvate, orthophosphate dikinase in a C(3) plant, rice.

The C(4)-Pdk gene encoding the C(4) enzyme pyruvate, orthophosphate dikinase (PPDK) of maize (Zea mays cv Golden Cross Bantam) was introduced into the C(3) plant, rice (Oryza sativa cv Kitaake). When the intact maize C(4)-Pdk gene, containing its own promoter and terminator sequences and exon/intron structure, was introduced, the PPDK activity in the leaves of some transgenic lines was greatly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 262 26  شماره 

صفحات  -

تاریخ انتشار 1987